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CHAPTER 1 

INTRODUCTION 

Although the development of radar did not mature until World War 11, the study of 

electromagnetic scattering, the basis of radar, is almost as old as Maxwell's equations 

themselves. Hertz, experimentally testing the theories of Maxwell in 1886, demonstrated that 

radio waves could be reflected by metallic and dielectric bodies [l]. Sommerfeld's solution 

for the half-plane scattering problem [2] appeared in 1896, and Mie's classic paper on the 

scattering from spheres [3] was published in 1908. In a speech delivered to the Institute of 

Kadio Engineers in iYi2 141, Marconi sal& 

As was shown by Hertz, the electric waves can be completely reflected by conducting 

bodies. In some of my tests I have noticed the effects of reflection and detection of these waves by 

metallic objects miles away. 

It seems to me that it should be possible to design apparatus by means of which a ship 

could radiate or project a divergent beam of these rays in any desired direction, which rays, if 

coming across a metallic object, such as another steamer or ship, would be reflected back to a 

receiver screened from the local transmitter on the sending ship, and thereby, immediately reved 

the presence and bearing of the other ship in fog or thick weather. 

Today, radar is used not only in ship detection applications as Marconi had predicted, but 

also in air traffic control, remote sensing, satellite detection and tracking, and law enforcement. 

Additionally, radar has a wide variety of military applications: for surveillance and detection of 

friendly and hostile planes, ships, tanks, and missiles; for navigation; and for control and 

guidance of weapons. 

With the increasing effectiveness and sophistication of today's military radar systems, the 

ability to reduce the radar visibility of potential targets has been of importance. There are four 

basic techniques for reducing the radar cross section (RCS) of a target [ 5 ] :  
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(i) shaping 

(ii) radar absorbing (or lossy) materials 

(iii) passive cancellation 

(iv) active cancellation. 

Of the four methods, shaping and the use of absorbing materials are the most effective. For 

example, a police radar capable of detecting the large planar surfaces of an Allied moving van 

(Fig. l.t(a)) 1.5 miles away could not detect the sleek curved surfaces of a Corvette (Fig. 

I.l(b)) 600 feet away [6]. 

One problem of interest in RCS reduction studies is that of the open-ended cavity [7] - 

[12]. Coating the interior of the cavity with lossy materials and shaping the cavities have been 

used in reducing the RCS of cavity structures. This thesis investigates both issues in the study 

of RCS reduction of arbitrary cavity structures. 

In Chapter 2, the effects of interior coating are studied. An open-ended cavity is often 

modelled as a section of waveguide, open on one end and terminated by a flat conducting plate 

on the other. A layer or layers of material lining the Waveguide wall serve to alter the modal 

fieIds in the guide in order to achieve either more or less attenuation for certain modes. With 

the proper choice of coating material and thickness, a significant RCS reduction can be 

achieved using only a single thin layer of coating. However, this reduction is only effective 

over a narrow frequency band at low frequencies ( a b  - 1, where a = radius of the cylinder; 

3, = the free-space wavelength). A generalized method is presented in this chapter for 

computing the propagation/attenuation constants for the normal modes of a circular waveguide 

lined with multiple layers of coating. This method is then applied to multilayered coated 

structures to show that a greater effectiveness in the attenuation of the normal modes can be 

achieved over a broadened frequency range. 

. .  
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Fig. 1.1 Comparison of body shapes for (a) Allied moving van, with flat planar surfaces 
and (b) Chevrolet Corvette, with smooth, sleek curves. 



In Chapter 3, the problem of calculating the RCS of an arbitrary cavity is addressed. 

Traditional methods of analysis for the open-ended cavity include such techniques as the modal 

analysis used in Chapter 2, finite element and difference methods, and moment methods. 

However, the aforementioned techniques become impossible if (i) the shape of the cavity is not 

a perfect sphere or cylinder, (ii) the electrical dimension of the cavity is large, or (iii) the space 

inside the cavity is not homogeneous. These restrictions prevent the realistic modelling of 

physical problems and hinder the study of the effects of shaping on RCS. In this chapter, a 

different strategy for analyzing the open cavity problem, entitled "shooting and bouncing rays" 

(SBR), is presented. A dense grid of geometric optics (GO) rays representing an incident 

plane wave is 'shot' into the cavity through the front aperture and followed as the rays bounce 

from conductors, penetrate through materials, and eventually return to the opening of the 

cavity. An innovative scheme is then used to integrate the aperture field to obtain the scattered 

field. This is the first attempt of its kind at solving partially open structures using the ray 

technique found in the open literature. The SBR method places no restriction on the shape of 

the cavity and permits the RCS computation for any arbitrarily shaped cavity. 

Chapter 4 studies the effectiveness of shaping as an RCS reduction method. The SBR 

method is used to study the RCS of uniform and nonunifom cylindrical cavities. For a large 

(relative to wavelength) flat-plate terminated cylinder, there is a large RCS value at near axial 

incidence due to the reflection from the termination . The near axial RCS of such structures can 

be reduced by a smooth gradual bending of the cylindrical axis. This chapter shows the 

reduction of RCS achieved by applying a longitudinal S-bend to a circular waveguide and a 

triangle-to-circle transition waveguide. The SBR method is currently the only available viable 

method for computing the RCS for such geometries. 

The range of validity of the SBR method is investigated in Chapter 5. The limitations of 

SBR are studied by considering the problem of a plane wave impinging on a semi-infinite 
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I 

I 
I 

I parallel-plate waveguide. Two alternative descriptions for the fields propagating in the 

waveguide are the modal analysis and GO ray analysis, used by the SBR method. A graphical 

comparison is made of the two field descriptions for the parallel-plate waveguide. This is 

believed to be the first graphical display showing the interplay between the two alternative 

I 

I descriptions of the fields. Though the simple model of the parallel-plate waveguide was chosen t 

because it best demonstrates the ray - mode equivalence, the results extend to other waveguide 

and cavity structures. It is demonstrated that for a waveguide separation large compared to 
l 

I wavelength, the ray and modal descriptions are in good agreement. 

Finally, the conclusions and some future work evolving from this thesis are discussed in I 

I Chapter 6. 
1 
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CHAPTER 2 
MODAL ATTENUATION IN 

MULTILAYERED COATED WAVEGUIDES 

2.1 Introduction 

One method used in reducing the RCS of cavity structures is to coat the interior of the 

cavity with lossy dielectric or magnetic materials. Previous studies [ 13],[ 141 on the effects of 

coating involve modelling the cavity as a coated circular cylindrical waveguide terminated by a 

perfect elecmc conducting (PEC) short and studying the propagation and attenuation properties 

of the normal modes of the waveguide. There are also many other applications in which it is 

desirable to line the wall of a conventional waveguide with a layer of coating material [ 151- 

[20]. The lining serves to alter the modal fields in  the waveguide in order to achieve either 

more or less attenuation for certain modes. 

Pathak and Altintas [21] showed that the interior irradiation contribution to the RCS of a 

shorted waveguide is due mainly to a few low-order normal modes. By attenuating low-order 

modes, a lossy lining layer serves as a mode suppressor, which then reduces the RCS of the 

cavity. Lee et al. [ 141 studied the normal mode behavior for a circular waveguide lined with a 

single layer of coating. It was shown that at low frequencies ( a h  - 1, where a = radius of the 

cylinder; h = the free-space wavelength) for a slightly lossy coating layer, the low-order 

modes can be highly attenuated with a single thin layer of coating. As the frequency increases, 

however, the attenuation constants of most of the low-order modes become small and decrease 

as a function of h2/a3. Thus, RCS reduction can be achieved only over a fairly narrow 

frequency range with a single layer of coating. This chapter studies the propagation/attenuation 

constants of the low-order modes in a waveguide lined with multiple layers of coating. By 

using two or more layers of coating material, the fields inside the waveguide can be more easily 

manipulated to achieve a greater region of attenuation. With multilayered coating, it is possible 

i 
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to achieve larger attenuation constants over a broader frequency range than with a single layer 

of coating. 

Past studies of coated waveguides have included such methods as perturbation theory 

[16],[17],[ 191, transmission-line model [15]-[ 181, and asymptotic theory [20]. These methods 

often require simplifying assumptions that are too restrictive, such as the coating material must 

be nearly lossless [16]-[18] or very lossy [20]. This treatment will apply the more general 

method of solving the modal characteristic equation exactly by a numerical method. This is 

feasible because of the fast computational speed of modem computers and the availability of 

efficient subroutines for computing Bessel functions with complex arguments. 

In Sec. 2.2, an overview of the modal fields in a coated circular waveguide is given. 

The mathematical formulation for the exact characteristic equation of the normal modes for a 

circular waveguide with multiple layers of internal coating is presented in Sec. 2.3. The 

conventional method involves setting the determinant of a 4n x 4n matrix equal to 0, where n is 

the number of coating layers. The propagation constants of the normal modes are the solutions 

of the characteristic equation. As the number of layers increases, this method becomes 

cumbersome due to the large size of the matrices involved. In addition, the characteristic 

equation, a transcendental equation involving Bessel functions, must be solved numerically on 

a computer. Different programs must be written for different numbers of coating layers. A 

generalized method for formulating the characteristic equation is presented which involves only 

the manipulation of 4 x 4 matrices. This method allows for a computer implementation which 

permits any arbitrary number of coating layers. Numerical results for the attenuation properties 

of the normal modes of circular waveguides with single and multiple layers of coating are 

presented in Sec. 2.4. 
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2.2 Overview of Modal Fields in a Coated Circular Waveguide 

A coated cylindrical waveguide is shown in Fig. 2.1 The problem of interest is the 

propagation/attenuation properties of the normal modes of such a structure. Figure 2.2 shows 

an exaggerated view of the coating layers for the sake of illustrating the geometrical features of 

the guide. In the application, the coating layers will be very thin relative to the diameter of the 

guide. The waveguide walls are assumed to be perfectly conducting, and each coating layer is 

assumed to be of uniform thickness. The axis of the cylinder coincides with the z axis. Both 

the permittivity Ei and permeability pi of each coating layer are allowed to be complex. The 

characteristic equation for the propagation constant kZ of the normal modes is derived from the 

well-known method of seeking nontrivial solutions for the coefficients of the field expressions 

of the equations obtained by enforcing the continuity of the four tangential fields, Hz, EZ, H$, 

E@, at each interface between two coating layers, and between the innermost coating layer and 

the inner region [22]. 

In an uncoated waveguide, the normal modes are either TEmn or TMmn with respect to 

the longitudinal axis z. The index m describes the azimuthal variation in the form of sin m$ or 

cos m@. Here, the index n describes the order of the eigenvalues of Jm(kpa) = 0 for TM and 

J’m(kpa) = 0 for TE, where Jm is the Bessel function of order m. (Note that variable n is also 

used to represent the number of coating layers. The intended meaning of subsequent uses of n 

should be clear from its context.) With the exception of the m = 0 case, the normal modes are 

no longer pure TE or TM when the waveguide is coated with dielectric or magnetic material. 

The modes are commonly classified into HEmn and EHmn in such a way that in the limiting 

case of a vanishing thin coating [23] 
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The modal fields for the waveguide are given by 

11 
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The convention of explj(ot - k, z)] is understood and suppressed. Superscript 1 

represents the inner region; superscript n+l represents the layer of coating on the conducting 

wall; and superscript i represents the ith region, where 2 I i 5 n. Subscripts p, 0, and z 

indicate the radial, angular, and propagation-directional components of the fields, respectively. 



13 

kpi represents the radial wave vector in region i, where k2pi + k2z = Eipik20 and k~ = 2nA; w 

is the angular frequency; Jm is the Bessel function and Nm is the Neumann function of order 

m. Ai, A2, Bil, Bi2, Bi3, Bi4, C1, and C2 are the constants, which are determined by the 

boundary conditions and normalization requirements. Due to circular symmetry, there are two 

degenerate modes for each angular mode index except for m = 0. One of the two degenerate 

modes is arbitrarily chosen in the above expressions. 

2.3 Characteristic Equation of the Normal Modes 

For the case of a single layer of coating, the characteristic equation for the propagation 

constant kZ of a normal mode is well known [22] and given by 

where a = r l  

b = r2 

k:l + = 

ki2  + e = ~ p 2 k ; .  

(2.3) 

For a double layer of coating, the Characteristic equation for the propagation constant kZ 

of the modal fields is given by the 8 x 8 mamx equation 
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0 0 

0 

0 

-kz 
-K2b) p3 

Y 

0 

0 0 

0 0 0 

- F26) 
Y 

0 0 0 

kZ2 - F2b) 
Y 

0 0 0 = o  det 

-k F2%) 4r 

kp2F2fb) 0 

0 0 

(2.4) where a = rl, b = r2, and c = r3. 

In general, for n layers of coating, the characteristic equation for k, is given by a 4n x 4n 

matrix equation. In numerically solving the equation, the computer time required becomes 

cumbersome as the number of layers increases. An efficient method for formulating the 

characteristic equation [24] for an arbitrary amount of layers can be utilized which involves 

only the manipulation of 4 x 4 matrices. 
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The boundary matching equations at each media interface can be written as 4 x 4 matrix 

(boundary between region 1, center region, and region 2, innermost equations. At p = rl 

layer), 

0 A1 

A2 

0 

0 

0 

kp2Gi(rl) 

0 0 



At p = ri, 2 I i I n - 1 (boundary between region i and i+ l), 

0 0 

0 

0 0 

0 0 

16 



At p = rn (boundary between two most outermost layers), 

- 

Cl 

c2 

0 

0 
- 

0 0 

0 

0 0 

0 0  

0 0  

0 0  

0 0  

17 

(2.7) 
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The boundary matching equations thus become n matrix equations for n layers of coating: 

M11 A =  M21 B 

M22 B = M-32 B 

Mab refers to the matrix resulting from the tangential fields in region a matched at boundary rt~. 

A is then related to C by 

(2.9) ~ 1 1  A = ~ 2 1  %k * - ~2 M(n+l)n C 

or M11A = M C  

where M = M2, Mi; . . . Mi: M(n+l)n. 

Because the last two columns of M(,lln are zero vectors, the last two columns of M will 

also be zero vectors. Therefore, M will be in form 

M =  

mil m12 0 0 

m21 m22 0 0 

m31 m32 

m41 m42 0 0  

(2.10) 



Equation (2.9) written out is then 

_ _  

-m12 

-m22 

-m32 

-*42 -- 

which can be rewritten as 

0 A1 

A2 
= o .  

cl 

c2 
d 

0 0  

0 0  

0 0  

0 0  

A1 

A2 

0 

0 

m11 

m2 1 

m3 1 

m4 1 

m12 0 0 

m22 0 0  

m32 

m42 0 0  

C1 

c2 

0 

0 
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I 

I 

I 

, 

(2.1 1 )  

-m11 

-m2 1 

-m3 1 

-m4 1 

(2.12) 

A i ,  A2, and C1, C2 fully define the fields in the inner region and outermost layer, 

respectively. The characteristic equation for the propagation constant k, is then given by the 
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determinant of the 4 x 4 matrix MAC set equal to zero, where MAC is the 4 x 4 matrix in 

(2.12). 

det MAC = det 
0 

0 -m11 

-m21 

-m3 1 

-m4 1 

-m12 

-m22 

-m32 

-m42 

= O  (2.13) 

To summarize, the boundary field matching equations can be expressed in the form of 4 x 

4 matrix equations (2.5),(2.6), and (2.7). From these relations, the coefficients for the fields 

in the center uncoated region can be shown to be related to the coefficients in the outermost 

coating layer by (2.9), which can be expressed as (2.12). Finally, for nontrivial solutions of 

the modal fields, the 4 x 4 matrix in (2.12) must be singular. Thus, the characteristic equation 

for the propagation constants of the normal modes is given by (2.13). 

All manipulations now involve only the inversion and multiplication of 4 x 4 matrices. 

Using this formulation, a computer program to compute the propagation constant kZ for any 

arbitrary number of coating layers can be written. The final expression (2.13), a complex 

transcendental equation, can be solved numerically, using, for example, Muller’s method 

(available as an International Mathematical Statistical Libraries subroutine). 
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2.4 Numerical Results 

The attenuation constant a of a normal mode in a coated waveguide is related to the 

magnetic and electric energies in the coated regions, IHI2 and IE12, by 

(2.14) 

I 

~ 

where the volume of integration is over the coated region [22]. Because of the boundary 

, 
I 

I 

condition of the PEC waveguide wall, the magnetic energy of an empty waveguide is much 

larger than the electric energy near the surface. Since the fields of the waveguide are not 

I 
I 

perturbed siznificantly by a coatins layer in the lnw frqijency ~ g j r \ n ,  !cq .p.r! mrrnn-tip p------ 

coating material is effective in reducing the RCS of a coated waveguide. Lee and Lee [ 121 I 

theoretically predicted and experimentally verified a 20 dBSM reduction for a PEC-terminated 

waveguide (a/h = 0.98) lined with a lossy magnetic coating material only 1.18% radii thick. 

As such, the numerical results presented will focus on coating configurations involving 

magnetic layers. 

The attenuation properties of the two dominant low-order modes for near axial-incidence 

RCS, the HE11 and EHll  modes, will be discussed for single- and double-layer coating 

I I 

1 

schemes. The interior uncoated region is taken to be free space (E = EO, p = PO) in all cases. 

The transverse field distributions for the two modes are shown in Fig. 2.3 for (a) empty guide, 

(b) lossless dielectric coated guide near cutoff, (c) lossless magnetic coated guide near cutoff, 

and (d) lossless coated guide in the high frequency limit. 

i 

~ 

1 

2.4.1 Review of single-layer coating results 

With a layer of lossy coating material, the low-order modes of a circular waveguide 

become inner modes [14] as a/h increases. The field distribution for such modes is confined 

mostly in the center region. The fields decay very rapidly from the coating interface to the 
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lossy layer, and the attenuation constants are small. Figures 2.4 - 2.6 show the attenuation 

constants as a function of increasing frequency for the HE11 and EH11, as well as the HE12, 

modes in a lossy magnetic (JJr = 1.5 - j2.0) coated waveguide. As the frequency increases, the 

lossy material tends to expel the fields from the coating region. The attenuation constants 

decrease as a function of h*/a3 for large frequencies [ 141. 

If the coating material is lossless, however, the modal power distribution is largely 

concentrated in the coating region. A layer of high dielectric constant tends to "pull" the fields 

into the coating region as the frequency increases. As shown in Fig. 2.7, although the 

dielectric layer ( E ~  = 10.0) covers only 12 percent of the waveguide cross section, 99 percent of 

the power is confined in the dielectric layer. These results suggest that by using a double layer 

of coating consisting of a lossy layer and a lossless layer with a large permittivity, the high 

attenuation region of some of the modes of the waveguide can be extended. A high field 

concentration would be attracted by the lossless dielectric layer into the coating region, and 

attenuated by the lossy layer. In the following multilayered coating results, the lossless 

dielectric layer will have = 10.0, and the lossy magnetic layer will have J.Lr = 1.5 - j2.0. 

2.4.2 Multilayered coating 

Figures 2.8 and 2.9 show the TEll attenuation constant as a function of increasing 

frequency for a lossless dielectric layer sandwiched between the waveguide wall and a lossy 

magnetic layer. Figure 2.8 shows a family of curves for a fixed thickness of lossy material and 

varying thicknesses of lossy dielectric material. As the dielectric layer increases in thickness, a 

greater amount of the field energy will be concentrated in this layer. This also causes more of 

the field to be within the lossy layer, resulting in greater attenuation. Note that there is a 

significant increase in both the level of attenuation and the frequency band of high attenuation. 
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Fig. 2.4 Attenuation constants of the HE11 mode in a lossy magnetic coated 
waveguide (Er = 1.0, pr = 1.5 - j2.0). 
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Fig. 2.5 Attenuation constants of the EH11 mode in a lossy magnetic coated 
waveguide ( E ~  = 1 .O, /.Lr = 1.5 - j2.0). 
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Fig. 2.6 Attenuation constants of the €€E12 mode in a lossy magnetic coated 
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Fig. 2.8 Attenuation constants of the HE11 mode in a double layer coated waveguide 
with an inner layer of lossy magnetic material (Er = 1.0, pr = 1.5 - j2.0) and 
an outer layer of lossless dielectric material (Er = 10.0, pr = 1.0). The 
thickness of the inner layer is fixed while that for the outer layer is varied. 
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Fig. 2.9 
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Attenuation constants of the HE11 mode in a double layer coated waveguide 
with an inner layer of lossy magnetic material (Er = 1.0, = 1.5 - j2.0) and 
an outer layer of lossless dielectric material (Er = 10.0, pr = 1.0). The 
thickness of the outer layer is fixed while that for the inner layer is varied. 
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i 

i In Fig. 2.9, the thickness of the lossy layer is varied while the thickness of the lossless layer is 

increased. If the lossy layer becomes too thick, the field repulsion property of the lossless 

layer is dominant over the field attraction property of the lossless layer. Figure 2.10 reverses 

i 

the lossless and the lossy layers so that the lossless layer is towards the waveguide center. No 

significant increase in attenuation is achieved with this configuration for the E 1 1  mode. 

Finally, Fig. 2.11 shows the EHll attenuation constant as function of increasing 

frequency for the waveguide wall - lossless layer - lossy layer geometry. The family of curves 

represents a fixed thickness of the lossy layer and varying thicknesses of the lossless layer. 

Again, there is a significantly higher level of modal attenuation over a wider frequency band for 

the multilayered case compared to that of a single layer of the lossy coating case. Note that the 

maximum value of the attenuation axis is now 100 dB/a (a = radius of cylinder). It is 

interesting to observe that up to a/h - 2.0, a thicker lossless layer results in a higher 

attenuation, But for a/h > 2.0, the z = 0.0la case results in the highest attenuation. This 

geometry, though, is not an effective coating for the HE11 mode (Fig. 2.8). 

2.4.3 Radar cross section reduction 

The application of interest is the reduction of KCS of coated cavity structures. In such 

applications, the actual coating geometry must be optimized to effectively attenuate all the 

highly excited modes. Detailed discussion of the evaluation of the RCS from a coated 

waveguide can be found in Reference [12]. Figure 2.12 shows the theoretical RCS 

calculations for a length of circular waveguide terminated with a flat PEC plate. The diameter 

of the guide is 4 h, and the length is 10 h. The three curves correspond to the RCS of (i) an 

empty guide, (ii) a waveguide coated with a single layer of lossy magnetic coating, and (iii) a 

multilayered coated waveguide consisting of a lossless dielectric layer sandwiched between the 

waveguide wall and a lossy layer. For the given size of the structure, the single layer coating is 
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Fig. 2.10 Attenuation constants of the HE11 mode in a double layer coated waveguide 
with an inner layer of lossless dielectric material (Er = 10.0, pr = 1.0) and an 
outer layer of lossy magnetic material (Er = 1.0, 
thickness of the inner layer is fixed while that for the outer layer is varied. 

= 1.5 - J2.0). The 
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Fig. 2.12 RCS's of coated and uncoated circular cylinders with diameter 4h and depth lOh . 
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not very effective in reducing the RCS. However, a double layer coating results in a 

substantial reduction in the RCS of the cavity at near axial incidence. When the angle of 

incidence of the incoming plane wave 8 200, the three curves approach a similar level. This 

is due to the fact that the higher-order modes are now more strongly excited, and the chosen 

coating geometry is not effective in attenuating these modes. 

2.5 Summary 

This chapter studied interior coating as a means of reducing the RCS of arbitrary cavities 

by studying modal attenuation in coated waveguide structures. An overview of the modal 

fields in a coated circular waveguide was given. To avoid dealing with excessively large 

matrices, a method was shown to express the waveguide characteristic equation for any 

number of coating layers which involves only the manipulation of 4 x 4 matrices. This method 

was applied to study modal attenuation in a multilayered coated waveguide. 

The dominant contributors to the RCS of a PEC-terminated waveguide at near-axial 

incidence are the low-order modes. A thin single layer of lossy magnetic material can greatly 

atrenuate these modes, and thus reduce the RCS of a waveguide cavity. However, this is o d y  

effective over a narrow frequency band at low frequencies. With the proper combination of 

Iossless dielectric coating and lossy magnetic coating, it was shown that a significantly higher 

modal attenuation can be attained over a broader frequency band for the HE11 and EHll 

modes. For large off-axis incidence, higher-order modes come into importance. It should be 

possible to reduce these modes over a broad frequency band with the proper combination of 

three or more layers of coating. 

1 
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representing an incident plane wave is "shot" into the cavity through the front aperture and 

CHAPTER 3 

return to the opening of the cavity (see Fig. 3.1). An innovative scheme is then used to 

SHOOTING AND BOUNCING RAYS: 
CALCULATING THE RCS OF AN ARBITRARY CAVITY 

3.1 Introduction 

Traditionally, the problem of calculating the RCS of a cavity structure is treated by the 

modal analysis. For example, Chang and Senior [9] studied the open spherical shell problem 

based on the expansion of interior and exterior fields in the spherical wave function. Recently, 

the problem of scattering from an open-ended circular cylinder with wall coatings was analyzed 
~ 

I by Lee et al. [25] by utilizing the cylindrical waveguide modes. Analytic solutions to a family 

of canonical problems have also been obtained by the dual series approach [26], [27]. 

However, the aforementioned techniques become impossible if (i) the shape of the cavity is not 

a perfect sphere or cylinder, (ii) the electrical dimension of the cavity is large, or (iii) the space 

inside the cavity is not homogeneous. These restrictions prevent the realistical modelling of 

physical problems and hinder the study of the effects of shaping on RCS. 

I 

I 
I 

ray technique. This approach is different from the traditional ray-tracing or ray-mode hybrid 

methods. Second, a real physical problem can be modelled closely, taking into account the 

noncircular opening of the cavity, the wall coating, and the longitudinal bending or twisting of 
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Fig. 3.1 Ray bouncing approach to calculating the RCS of a partially open cavity 
with complex geometry and material loading. 
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the cavity. This method is so simple in concept that there is virtually no restriction on the 

shape or material loading of the cavity. 

In Sec. 3.2, the problem is formulated based on geometrical optics. The paths of each 

individual ray are fust determined by Snell's law. The field amplitudes associated with each 

ray are computed by taking into consideration (i) geometrical divergence factor, (ii) 

polarization, and (iii) material loading of the cavity walls. The contributions to the 

backscattered field from individual rays are then summed up to arrive at the total RCS due to 

the interior irradiation of the cavity. Results of the SBR method are compared to the existing 

modal results for the case of a straight circular cylinder with a PEC termination in Sec. 3.4. 

3.2 Formulation of Shooting and Bouncing Rays 

Referring to Fig. 3.1, consider an arbitrary cavity with an opening at the aperture EA. 

The inside walls of the cavity may be coated with dielectric or magnetic materials. Additional 

scatterers may also exist inside the cavity, but will not be considered in this treatment. The 

incident plane wave is given by (for exp(+jot) time convention) 

where 

(3.1) 

-+a 

k1= 

I = amplitude of the TE wave 

I = amplitude of the TM wave. 

(^x sin Oi cos 4 + 9 sin €li sin @ + z  ̂ cos ei) 

- 
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The problem at hand is to determine the backscattered field in the direction of Zi  and the RCS 

of the cavity. The backscattering from the exterior of the cavity is not treated, since (i) the 

exterior scattering is small for small angle of incidence 0i and (ii) the exterior scattered field can 

be considered separately. In addition, it is well known that the contribution to the 

backscattered field from the energy coupled into and re-radiated from the cavity is much 

greater than that from the rim diffraction, especially if the cavity opening is large compared to 

the wavelength [8], [lo]-[12], [25], [28]. Therefore, attention will be focused on the interior 

irradiation mechanism. 

The ray bouncing approach will be c a n i d  out in three parts: 

Given the geometry of the cavity and the incident field, find the ray paths in the cavity by 

ray tracing. This part of the problem is dependent only on the geometry of the problem. 

Determine the field amplitude of the exit rays on the aperture based on geometrical optics. 

This involves calculating the ray tube divergence factors and the reflection coefficients. 

Use Kirchhoff s approximation (physical optics) to determine the backscattered field and 

the RCS. 

(i) 

(ii) 

(iii) 

These steps will be described in detail in the following sections. 

3.2.1 Ray tracing 

In order to model the incident plane wave, parallel rays are launched from the incident 

direction. Each ray is represented by a line in space with a reference point (xo, yo, zo) and a 

direction vector (sl, s2, s3). Any point (xi, yl, zl) along this line would then be described by 

( X I ,  Y1, 21) = (xo, yo, ZO) + ( S I ,  s2, s3) t * (3.2) 

By this definition, if the phase of the field at (xi, yl, zl) lags that of point (xo, yo, zo), then t 

will be a positive quantity. The direction vector of the incident rays is given by 

s1 = -sin ei cos +i (3.3) 



39 

I 

I 

I 

I 

I 

I 

I 

I 
I 

I 
I 

s2 = -sin ei sin 4 
s3 = -cos $1 . 

The reference point ( x ~  y o  ~ 0 )  on the incident plane Xi can be related to the point (xa, ya, 0) 

on the aperture EA via 

(3.4) 

The parameter to in (3.4) determines how far Ci is from the aperture plane and can be chosen 

arbitrarily (e.g., to = -10). To summarize, the incident ray is described by (3.2), where the 

direction vector is given in (3.3) and the reference point (xo, yo, zo) can be related to a 

corresponding point on the aperture via (3.4). 

Once the incident rays have been defined, the impact point of each ray on the inner wall 

of the cavity can be determined. This is accomplished by solving simultaneously the equation 

describing the cavity z = f(x,y) and (3.2). For example, if the cavity is a circular cylinder with 

radius a, the intersection is found by substituting into (3.2) 

t = (-B + 4-/2A 

where 

A = s l + s 2  2 2  

B = 2(s1x() + s2yo) 

(3.5) 

~ = x ~ + y i - a 2  2 . 
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For arbitrary cavity structures, the condition T;'i + 

of the wall, may be useful for discarding extraneous solutions. 

> 0, where ^n is the inward pointing normal 

Next, the equation for the reflected ray will be determined. The reflected ray must satisfy 

Snell's law, namely, (i) it must lie in the plane of incidence and (ii) the angle of reflection must 

equal the angle of incidence. Referring to Fig. 3.2, define a unit vector 

A is perpendicular to the plane of incidence. The above two conditions can be restated as 
(i) fi - A = 0 and (ii) fb - = cos 8,. These two conditions are solved simultaneously in i 

order to determine the direction of the reflected ray. The equation for the reflected ray is now 

complete since both the direction and the reference point (impact point) are known. 

Consequently, by using this reflected ray as the incident ray, the above procedure can be 

repeated until the ray exits the cavity. The exit of the ray from the cavity is easily detected 

when the ray intersects the aperture &. For every ray launched, a set of impact points inside 

the cavity and the direction of the existing ray are obtained. 

3.2.2 Amplitude tracking 

Once the ray paths inside the cavity are found, the field amplitude along the ray can be 

determined. For each ray launched, a set of impact points was found within the cavity, { (xl, 

yl, q)), i = 1,2, ..., N. The aperture field associated with the exit ray, z ( x N ,  yN, 0), is to 

be determined. From geometrical optics, the electric field obeys the following recursion 

relationship 
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Fig. 3.2 Local coordinate system of the first impact point. 
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where Phase = [(xi+l, - xi)2 + ( ~ i + ~ ,  - yi)2 + ( ~ i + ~ ,  - zi)2 ]'I2 and ~ ( x ~ , y ~ , z ~ )  is the inci- 

dent field at (xl, yl, zl). (F)i is the planar reflection coefficient matrix at the ith reflection point 

where the original curve interface in Fig. 3.2 is replaced by its tangent plane at the reflection 

point. (DF); is the divergence factor which governs the spreading of the differential ray tube 

from just after the ith reflection to just before the (i+l)th reflection. The remaining tasks are the 

determinations of these two quantities. 

- 

A. Planar Reflection Coefficients. Referring to Fig. 3.3(a), attention will be restricted to 

the case of one layer of dielectric or magnetic coating with thickness z and backed by perfect 

conducting walls. The transmission line analogy to the field problem is shown in Fig. 3.3(b). 

The well-known planar reflection coefficients for the TE and the TM case are summarized in 

Table 3.1. 

Table 3.1 Reflection Coefficients 
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1 

Fig. 3.3 (a) The original curved interface is replaced by its tangent plane at the 
impact point 1 for calculating the reflection coefficient based on GO. 
(b) Transmission line analogy of the planar reflection problem in (a). 
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i For the assumed time convention, the complex root is chosen to have a positve real 
I 

I 
component and a negative imaginary component. 

- 

B. TE/TM Decomposition. In order to apply the reflection coefficients and r found in 

Table 3.1, the incident field needs to be decomposed into its TE and TM components. Using 

subscript c to denote local coordinates (see Fig. 3.2), the incident field can be written as 

The reflected field is then given by 

So the reflected field is easily found once $it and b i t  are determined in terms of the global xyz 

coordinate. Choose 

A A h  x C = m x n  

zc = -n 

yc=-m . 

A A 

A A 

From Fig. 3.2, 

(3.10) 

(3.11) 
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I 

Then 

i~ i~ 1 bc = + cos e, - zc sin e, 
A i  A 
oc = Yc 

and 

A i~ i 6; = -+ cos e, - zc sin ec 

C. Divergence Factor. 

I 

This space intentionally left blank 

(3.12) 

(3.13) 
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3.2.3 Physical optics 

Given the outgoing field on the aperture EA, the outgoing field can be computed by the 

standard physical-optics approximation. First, the outgoing field is replaced by an equivalent 

magnetic current sheet Ks 
+ 

+ 
Ks = { (3.23) 

I o  ; outsideXA 

-+ 
Ks radiates in the backscattering direction and gives rise to the RCS. The backscattered field is 

calculated from 

u = sin ei cos $1 

v = sin 8' sin . 

(3.24) 

E, and E, are the x and y components oL the outgoing field on the aperture Z,. The RC 

defined in Table 3.2. 

is 
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Table 3.2 Radar Cross Section Definition 

TE Incidence (I = 1, I = 0) TM Incidence (I = 0, I = 1) 

co-pol RCS4@ = 4x1A4I2 RCSee = 4xIAeI2 

Cross-pol RCSeO = 4xlAeI2 RCS4e = 4x1A4I2 

Phase L A49 L A, L A,, L A4 

In general, the positions of the outgoing rays are randomly dispersed over the aperture, 

even if the incident rays are launched uniformly. Since the outgoing rays do not lie on an 

equally spaced grid, the integration in (3.24) cannot be easily carried out. One possible 

solution to this problem would be to interpolate the results to find the fields on the integration 

grid. However, the proper interpolation scheme is difficult and an alternative approach is 

taken. Suppose only a small ray tube is shot into the cavity. This ray tube bounces around the 

walls and eventually comes to the aperture plane. It is possible to compute the backscattered 

field due to this ray tube by taking into account its wavefront curvature, size, and shape. By 

repeating this process until enough ray tubes are launched into the cavity to model the incident 

plane wave, the total scattered field should be the sum of the scattered field due to each 

individual ray tube. Using this idea, the scattered field expression will now be derived. 

Consider one of the incident ray tubes with an area of (Axo Ayo). The central ray with 

direction vector (sl, s2, s3) hits point (xi, yi) on C, (see Fig. 3.4). The field within the 

exiting ray tube area (Axi Ayi) will be approximated as follows: 

(3.35) 
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Fig. 3.4 Planar approximation for the wavefront of the exit ray tube. 
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In other words, the field with the ray tube at point (x, y) has the same magnitude as the field 

associated with the central ray. In addition, there is a linear phase variation across the ray tube. 

This linear phase approximation should be valid as long as the output ray tube is not too large. 

The physical-optics integral in (3.24) can now be evaluated using the plane-wave 

approximation. By summing over each ray tube, (3.24) becomes 

(3.26) 

r 1 

Since the fields associated with each exit ray, Ex(xi,yi) and Ey(xi,yi), are independent of the 

integration variables x and y, the bracket in (3.26) can be taken out of the integral sign: 

where 

(3.27) 
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ray tube 

and 

(AxiAyi) = area of the exit ray tube. 

Closer examination reveals that Ii is nothing but the Fourier transform of the ray tube 

shape function (normalized with respect to the ray tube area). In order to determine the shape 

of the ith exit ray tube, four adjacent rays are launched into the cavity in the form of a square as 

qhnwn in_ Fig 1.5. These fclx r,ys, q!cz exit, f ~ x ,  ii ZtriigGilii; &dpZ UII ik vurpur aperture. 

The position vectors of the four rays on the aperture are denoted by yn  = xn x + yn y, n = 1, 

2, 3, 4. The normalized Fourier transform of the tetragonal shaped function can now be 

evaluated as described in [34]: 

+ A A 

(3.28) 

where 
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Fig. 3.5 Shape of the exit ray tube on the output aperture is obtained by shooting 
four adjacent rays into the cavity. 
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* A A  w = p x + q y  . 

+ 
Note that by definition, yo = y4 in the above expression. The shape of the ray tube is 

approximated by a four-sided polygon. If desired, higher-order polygons can always be used 

for a more refined approximation of the ray tube shape. 

Lastly, the output ray tube area (AxiAyi) can be related to the incident ray tube area 

(AxoAyo) through the ray tube divergence factors calculated earlier. The area of the exit ray 

tube is related to the area of the incident ray tube via the product of the divergence factors: 

(AXiAyi)=[: I(OF)iI]-2 (-> cos e' (AxoA~yo) . 
i= 1 cos e, (3.29) 

The ratio of the cosines is an added factor which accounts for the angles of the ray tubes 

entering and exiting the cavity (see Fig. 3.6). 

If the quantity of interest is the bistatic cross section (BCS) rather than the assumed 

monostatic RCS, the incident direction angles €Ii and (9 should be replaced by the observation 

direction angles W b  and @Ob in (3.24), (3.26), and (3.27). 

To summarize, the physical-optics integral defined in (3.24) is evaluated by summing the 

backscattering contributions due to each ray tube. The wavefront of the exiting ray tube is 

approximated to be planar as given in (3.25). The shape of the exit ray tube is approximated 

by a four-sided polygon. The far field is proportional to the Fourier transform of this 

normalized shape function and is found using (3.28). Finally, the area of the exit ray tube is 

found by the product of the divergence factors and is related to the incident ray tube via (3.29). 
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Incident 

Outgoing 

Fig. 3.6 The area of the output ray tube is related to that of the incident ray tube 
by the product of the divergence factors. 



57 

3.3 Numerical Results 

A ray bouncing program, denoted as SBR (Shooting and Bouncing Rays), has been 

implemented based on the formulation described in Sec. 3.2. In this program, it is assumed 

that the cavity is composed of an arbitrary cylindrical cavity with a flat aperture at z=O and a flat 

PEC termination at z=d. The inner walls of the cylinder can be coated with either dielectric or 

magnetic materials. Below, the comparison of SBR results with those generated by the modal 

analysis for a circular cylinder with uniform cross section is shown. 

3.3.1 Exit ray positions 

Shown in Fig. 3.7 are plots of the incident and exit ray positions on the aperture plane for 

a circular cylinder with a flat end-plate. The incident rays are launched from a uniformly 

spaced grid on the aperture. For a small incident angle (8 = lo), the majority of the incident 

rays simply reflect off the end-plate and bounce back to the aperture without hitting the side 

walls. Therefore, they remain uniformly spaced on the exit aperture. As the incident angle 

increases, the positions of the exit rays become more dispersed due to the large number of 

bounces inside the cavity. This behavior is even more apparent in the case of an elliptical 

cylinder with nonuniform cross sections as shown in Fig. 3.8. 

3.3.2 Comparison with modal analysis 

RCS results generated by the SBR program are compared with those obtained by the 

modal analysis [12] for a straight circular cylinder with PEC walls. Shown in Figs. 3.9-3.1 1 

are RCS plots versus angle 8 for circular cylinders with a fixed diameter of 4 h and a different 

depth d. The copolarization of both the TE and TM cases are plotted as RCS++ and RCSe 8, 

respectively. The solid circles are the modal results and the solid curves represent results from 

the present SBR formulation. Good agreement is obtained between the ray bouncing method 
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Fig. 3.7 The incident and exit ray positions on the aperture for a circular cylinder 
with a flat end-plate. 
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Fig. 3.8 The incident and exit ray positions on the aperture for an elliptical 
cylinder with nonuniform cross section and a flat end-plate. 
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Fig. 3.10 Comparison of results for ray bouncing with modal analysis for a 
circular cylinder with diameter 41 and depth 4h. (a) @+-polarization, 
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and the modal analysis, except in Fig. 3.1 l(a> for the 10 h deep cylinder. Possible reasons for 

the discrepancy will be addressed in Chapter 5. Although a comparison with a much larger 

cylinder is preferable, the modal analysis program was limited to about a 4 h opening. 

The convergence of the present ray formulation is checked by increasing the total number 

of rays launched into the cavity. Shown in Fig. 3.12(a) is the RCSee at 8 = 25' plotted as a 

function of the number of rays per wavelength. It is observed that the results converged for a 

density greater than about 10-15 rays per wavelength. As the depth of the cylinder increases, 

the rate of convergence slows down. This is presumably due to an increased number of ray 

bounces inside the cavity and the highly divergent exit ray directions on the output aperture. In 

Fig. 3.12(b), the RCSee at 8 = 50' is plotted as a function of the number of rays. At this 

larger angle, convergence is slower compared to the case in Fig. 3.12(a), again due to the 

increased number of bounces. 

3.3.3 Radar cross section of large circular cylinders 

Because the number of propagating modes increases exponentially with the radius of the 

cylinder, large aperture problems are not easily handled by the modal analysis. Modal analysis 

quickly becomes extremely cumbersome for large apertures because the propagation constant 

of each normal mode must be known. Since GO is a high frequency approximation, SBR is 

ideally suited for large aperture problems. Shown in Figs. 3.13 and 3.14 are the RCS plots of 

large circular cylinders. In Fig. 3.13, the cylinder has a diameter of 5h and depth of 10h. In 

Fig. 3.14, the cylinder has a diameter of lOh and depth of 40h. Fifteen rays per wavelength as 

suggested by the convergence study were used. The results were generated on the NSF Cray 

X-MP supercomputer at the University of Illinois. 
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Fig. 3.12 Convergence of the RCS results as the ray density launch is increased. 
(a) 8 = 2 5 O ,  (b) 8 = 50". 
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Fig. 3.13 RCS of a circular cylinder with diameter 10 3c and depth 10 h. 
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3.4 Summary 

A ray bouncing method was presented for calculating the electromagnetic scattering from 

an arbitrary open cavity. This approach is based on tracking a large number of rays launched 

into the cavity through the opening and determining the geometrical optics field associated with 

each ray by taking into consideration the (i) geometrical divergence factor, (ii) polarization, and 

(iii) material loading of the cavity walls. The contributions to the backscattered field from 

individual rays launched into the cavity are summed up to obtain the total internal RCS of the 

cavity. It was shown that the RCS results obtained by the ray approach agree well with those 

for the modal analysis even for a small 4 h cavity. 
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CHAPTER 4 

RADAR CROSS SECTION REDUCTION 
OF CAVITIES BY SHAPING 

4.1 Introduction 

In addition to coating with lossy or absorbing materials, another method for reducing the 

RCS of a target is the proper shaping of the target . Through the use of shaping and radar 

absorbing materials, the RCS of a B-1 bomber is two orders of magnitude less than that of a 

B-52 [35]. A target should not have any flat, cylindrical, or conical surfaces which might be 

illuminated by the incident radar field along the normal to the target. An example of a target 

shape that yields a low RCS value over a wide range of incidence angles is the cone-sphere [l]. 

This chapter examines the effects of shaping, specifically, the effects of longitudinal bending, 

on the RCS of cylindrical cavities by applying the SBR method developed in Chapter 3. 

For a large (relative to wavelength) flat-plate terminated cylinder, there is a large RCS 

value at near axial incidence due to the reflection from the termination (for examples, see Figs. 

3 J 3  and 3.14). The near axial RCS of such structures can be reduced by a smooth gradual 

bending of the cylindrical axis. One such longitudinal bend, an S-bend, can be described by a 

half cosine function. For a cylindrical cavity with the cavity aperture on the x-y plane, the 

body restricted to the z I O  half-space, and the cylindrical axis coincident with the z-axis (e.g., 

Fig. 3.1), the axis of the cylinder is deformed to 

where H is the amount of offset and d is the depth of the cavity. If H is greater than the largest 

radii of the aperture, no GO ray at axial incidence will directly reflect from the termination 

plate. 
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Two cavity geometries and their corresponding S-bend geometries will be considered. 

First is a circular cylinder terminated by a flat shorting plate. The second is a cylindrical 

waveguide with a triangular aperture and a circular end-plate. The transition extending from 

the triangular cross section to the circular cross section is smooth. The SBR method is 

currently the only available viable method for computing the RCS for such geometries. Section 

4.2 will describe the mathematics of the cavities and their SBR implementation. Numerical 

results will be presented in Sec. 4.3. 

4.2 Cavity Geometries 

In this section, the mathematical descriptions of the cavities to be analyzed will be 

presented. Section 4.4.2 describes the straight and S-bend circular cylinders. The formulation 

for the triangular-to-circular waveguide is given in Sec. 4.4.3. 

4.2.1 Circular cylinder 

The terminated circular cylinder and S-bend circular cylinder are shown in Fig. 4.1. The 

surface for thestraight cylinder is described by 

for 0 S z < -d 

for z =- d 

(4.2) 

where a is the radius and d is the depth of the cylinder. The equation for a terminated S-bend 

circular cylinder is given by 

x2 + (y - H/2 [cos(lcz/d)] - 13)2 = a2 

x* + (y - H )2 I a2 

for 0 I z < -d 

for z =- d 

(4.3) 
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Fig. 4.1 Circular cylinder and S-bend circular cylinder. 
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where H is the amount of offset of the end-plate with respect to the aperture. If H = a, the 

offset of the end-plate is exactly one diameter. When H = 0, (4.3) reduces to (4.2). Note that 

for the S-bend cylinder, a cross-sectional view at any z = constant plane also yields a perfect 

circle. 

An impact point (xi, y1, zl) of a ray with the cavity is found from solving the equation of 

the cavity parametrically with the equation of the ray 

(x, y, z) = (xo, yo, zo) + ( S l ,  s2, s3) t 

where 

(q, yo, q) is the initial starting point or the previous reflection point or the ray, 

(SI, s2, s3) is the direction vector of the ray. 

For the straight circular cylinder, the solution can be given in closed form by 

t = (-B + dB2 - 4AC) /2A 

where 

2 2  A = s1 + s2 

C = x O + y o - a 2  2 2  . 

(4.4) 

The coordinate (XI, y1, 21) is then found by substituting (4.5) into (4.4). For the S-bend 

circular cylinder, the simultaneous solution to (4.3) and (4.4) is found numerically. 

In the computation of the curvature matrix, the obvious choice for the (u, v) coordinates 

of the straight cylinder is (u, v) = ($, z), where $ is the standard angular coordinate in a 

cylindrical coordinate system. For the end-plate at z=-d, (u, v) is set to (u, v) = (x,y). The 

cavity can then be described by 
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+ 
r = (x, y, z) = (a cos $, a sin $, z) 

r = (x, y, -d) with x2 + y2 I a 

for 0 I z < -d 

for z = - d  . + 

The curvature mamx Q' for the cavity, defined by (3.18), can be easily shown to be 

$ = [  lLR O ]  
0 0  

0 0  
F = [  0 0  ] 
For the S-bend, define an angle cp such that 

x = a coscp 

y - H/2 [cos(nz/d)] - 11 = a sin cp . 

In other words, 'p can be described by 

cp = tan-1 [ (y - H/2 [cos(nz/d)] - 11 )/ x} 

In this case, the choice for (u,v) is now ((p, z), and 

for 0 I z < -d 

for z = -d . 

+ 
r = (x, y, z) = (a cos cp, a sin cp + W2 [cos(nz/d)l, z> 

r = (x, y, -d) with x2 + y2 I a 
+ 

The curvature matrix Qz can be found from (3.18). 

4.2.2 Triangle-to-circle transition waveguide 

I 

(4.6) I 
I 
I 

(4.7) 

(4.8) 

(4.9) 

for 0 I z < -d 

for z = - d  . 
(4.10) 

A segment of the line on the z = 0 plane described by y = mx + b can be smoothly 

transformed in the -z direction to an arc of the circle described by x2 + y2= a2 on the z= -d 

plane with the following equation: 
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a z (x2+ y2-a2) + (z + d) (y - mx -b) = 0 for 0 5 z < -d (4.1 1) 

where a is a transition parameter. This can also be represented in cylindrical coordinates by 

z + d  where g(z) = - 
2az  

for 0 I z < -d 

Figure 4.2 shows such a transition for a = 0.05, d = 45, m = 0, b = -16/fl, and a = 15, 

where 0 is restricted to -1500 I 0 I -300. Several of these surfaces can be combined to form a 

smooth transition from an arbitrary polygon to a circle. Care must be takm tn inwire cnntin-ciy 

of the structure at the surface junctions. This is accomplished with the proper choice of a. 

Figure 4.3 shows such a waveguide structure with a triangle-to-circle transition. For a 

triangular aperture with side s, center at (xc, yc) = (O., O.), and base parallel to the x-axis, the 

parameters that define the waveguide are 

a 1 =  a0 ml = 0.0 b l =  -~/(2fi) -1500 5 @ I -300 

a 2  = 2a0 m2=-d '3  b2= s/a - 300 I @ I 900 (4.13) 

a3 = 2a0 m3= d'3 b2= s / 6  900 I o  I -1500 * 

In Fig. 4.4, cross-sectional cuts at various lengths along the waveguide for a0 = 0.05 are 

shown. 

The equation for the S-bend transition is 

a z (x2 + (y - H/2 [cos(m/d)])2 - a*) + (z + d) (y - W2 [cos(nz/d)] - mx -b) = 0 

for 0 I z < -d . (4.14) 
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Figure 4.5 shows the surface shown in Fig. 4.2 with the addition of an offset H = 27. Figure 

4.6 shows the S-bend triangle-to-circle transition waveguide. In computing the surface 

curvature matrix, define cp from 

(4.15) 

where p(cp, z) is given by (4.12). Thus, cp is exactly equivalent to (4.9). The choice of (u,v) 

coordinates, as for the S-bend circular cylinder, is (u, v) = (cp, z). Ths surface given 

parametrically by (cp, z) is then 

Equations (4.14), (4.15), and (4.16) reduce to a straight transition waveguide when H = 0. 

The intersection points for the rays with the cavity is determined from the solution of 

simultaneously solving (4.4) and (4.14). The equations for the flat end-plate at d = 0 are 

identical to the second half of (4.2), (4.3), (4.6), and (4.7) in Sec. 4.2.2. 

4.3 Numerical Results 

RCS computation results will be presented for the end-plate terminated straight and S-bend 

circular waveguides and the straight and S-bend triangle-to-circle transition waveguides. For 

the circular waveguides, the diameter used is 5h across and the length along the z -axis is 10h. 

The diameter offset parameters H for the circular S-bend are 2.51 and 5h, so that the back 

plate of the cylinder is exactly one half and one diameter below the aperture, respectively. For 

the transition waveguide, the length of one side of the triangular aperture is 5.4h and the 
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diameter of the end circle is 4.51. The length along the z-axis is 6.751, and the offset for the 

S-bend case is 4.0%. A ray entering the cavity at axial incidence will not directly hit the 

circular end-plate. 

4.3.1 Exit points and ray paths 

Shown in Fig. 4.7 are the exit ray pictures on the aperture plane for the circular straight 

and S-bend cavities. Each dot represents the point on the aperture plane where a ray exits the 

cavity. The incident rays are launched from a uniformly spaced grid on the aperture. At axial 

incidence (0 = $I = OO), the incident rays reflect straight back from the end plate, and the exit 

ray positions are coincident with the input ray positions on the aperture plane. For the S-bend 

geometry, because there is no direct reflection, the output rays are dispersed even at axial 

incidence. Figure 4.8 shows some exit ray pictures for the straight and S-bend transition 

waveguides. 

Figures 4.9 and 4.10 show the ray paths for a single individual ray for the S-bend circular 

cavity. The figures show the ray path from three different perspectives. Each dot represents a 

reflection point inside the cavity. The area ratio given on each figure is the ratio of output area 

to input area for the differential ray tube associated with the ray, calculated from (3.29). A 

typical ray can take anywhere from a few bounces to well over a hundred bounces for the given 

geometry. The ray in Fig. 4.9 takes 5 bounces inside the cavity while the ray in Fig. 4.10 

takes 123 bounces inside the cavity. Both rays represent a plane wave incoming at axial 

incidence. The ray in Fig. 4.10 is similar to a ray for the whisper gallery mode [36]. SBR is 

ideally suited for computer-aided design (CAD) systems in the sense that a high RCS in a 

particular aspect angle can be traced back to the contribution from a particular portion of the 

target through examination of the rays paths and field amplitudes. The particular portion of the 
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Fig. 4.7 Exit ray pictures for (a) circular cylinder with flat end-plate and 
(b) S-bend circular cylinder with flat end-plate. 
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Fig. 4.8 Exit ray pictures for (a) straight triangle-to-circle transition waveguide with flat 
plate end-plate and (b) S-bend straight mangle-to-circle transition waveguide 
with flat end-plate. 
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I/ 

Fig. 4.9 Ray path in an S-bend circular cylinder (5h offset). 
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Fig. 4.10 Ray path in an S-bend circular cylinder (5h offset). 
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target can then be reshaped or coated with absorbing material, and the RCS of the modified 

geometry can be recomputed. 

Figure 4.1 1 shows the front aperture for the S-bend triangle-to-circle transition 

waveguide. Each dot represents an input position for a ray to be launched at axial incidence. 

Figures 4.12 - 4.17 show the individual ray paths. The number next to each dot in Fig. 4.11 

indicates the number of the figure that shows the ray path for that particular input point. Again, 

the area ratio for each individual ray is given. Note for this sampling of six rays, the value of 

the area ratio varies from a low of 3.52 (Fig. 4.13) to a high of 477558 (Fig. 4.15). For 

highly curved closed cavities, a ray that takes a very high number of bounces generally has a 

very high area ratio due to a very low divergence factor product. No conclusion can be reached 

for rays that take only a few bounces. The ray in Fig. 4.12 has a higher area ratio than the ray 

in Fig. 4.16 despite making more bounces. 

4.3.2 Radar cross section computations 

Convergence of SBR for the S-bend circular cylinder is checked by increasing the number 

of rays launched into the cylinder. Figure 4.18 shows the BCS calculations for the 2.5 h 

offset S-bend cavity for an incident plane wave at (ei, $i ) = (100, -900). Figure 4.19 shows 

the BCS calculations for the 5.0 h offset case. A greater cavity bend requires a higher density 

of rays for convergent BCS calculations. Figures 4.20 and 4.21 show the BCS's for the 

straight and S-bend transition waveguides, respectively, for the same incident plane wave. 

Note that the S-bend transition waveguide requires twice the linear density for convergence 

over the straight waveguide. This results in a four-fold increase in computation time due to a 

corresponding increase in the number of rays. Figure 4.22 compares the calculated RCS for a 

2.51 offset S-bend cylinder against a straight circular cylinder. Figure 4.23 compares the 

calculated RCS for a 5.0h offset S-bend cylinder against a straight circular cylinder. Though 
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Fig. 4.1 1 Triangular aperture of transition waveguide. Each point corresponds to input 
point of ray for Fig. 4.12 - Fig. 4.17. 
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Fig. 4.12 Ray path in an S-bend triangle-to-circle transition waveguide. 
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Fig. 4.13 Ray path in an S-bend triangle-to-circle transition waveguide. 
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Fig. 4.14 Ray path in an S-bend triangle-to-circle transition waveguide. 
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Fig. 4.15 Ray path in an S-bend triangle-to-circle transition waveguide. 
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Fig. 4.16 Ray path in an S-bend triangle-to-circle transition waveguide. 



92 

li li 
Fig. 4.17 Ray path in an S-bend triangle-to-circle transition waveguide. 
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Fig. 4.18 BCS with different input ray densities for an S-bend cylinder with diameter of 
5h, depth of 10h, and offset of 2.5h. Direction of incidence 
(8in, $in) = (100, -900). (a) $$-polarization, (b) 88-polarization. 
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Fig. 4.19 BCS with different input ray densities for an S-bend cylinder with diameter of 
5h, depth of 10h, and offset of 5.0h. Direction of incidence 
@in, Qb) = (100, -9OO). (a) @)-polarization, (b) 88-polarization. 
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Fig. 4.20 BCS with different input ray densities for a triangle-to-circle transition 
waveguide with triangle side of 5.4h7 end circle diameter of Fig. 4.5h7 and 
depth of 6.7% Direction of incidence (@in, $in) = (100, -900). 
(a) $$-polarization, (b) 8 @-polarization. 
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Fig. 4.21 BCS with different input ray densities for an S-bend triangle-to-circle transition 
waveguide with mangle side of 5.41, end circle diameter of 4.51, depth of 
6.751, and offset of 4.051. Direction of incidence (ein) @in) = (loo, -goo). 
(a) @@-polarization, (b) Oe-polarization . 
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both S-bend geometries show a reduction of RCS, there is a significant higher reduction near 

axial incidence by the 5.01 offset. As the incidence angle increases to f200, the RCS levels of 

both offsets become comparable. Figure 4.24 compares the RCS of a coated S-bend cylinder 

(2% offset, Er = 2.5 - j1.25, pr = 1.6 - j0.8) to that of the uncoated S-bend and the straight 

cylinders. The coated S-bend case shows a 30 dB - 40 dB reduction across the range of angles 

calculated. Finally, Fig. 4.25 compares the RCS of the straight, the S-bend, and the S-bend 

with coating (Er = 2.5 - j1.25, pr = 1.6 - j0.8) transition waveguides. Again, the uncoated S -  

bend shows a good RCS reduction at near axial incidence, but the coated S-bend shows an 

even greater reduction over a greater range of incident angles. 

4.4 Summary 

The bouncing ray method presented in Chapter 3 was applied to study the electromagnetic 

scattering from several cavity structures. The emphasis was on shaping as a method of 

reducing the RCS of the cavities. It was shown that with a longitudinal S-bend, the RCS's of 

cylindrical cavities can be significantly reduced at near axial incidence. However, an S-bend 

cavity with coating causes an even greater RCS reduction, and over a greater range of incident 

angles. Convergence of the SBR method was demonstrated. S-bend geomemes require a 

higher density of rays for convergence than their straight cylindrical counterparts. 

SBR is a computer intensive method. The results in this chapter were generated on the 

NSF Cray X-MP supercomputer at the University of Illinois. For an S-bend structure, 

approximately 90 percent of the computation time is spent finding the ray paths in the cavity. 

In applications of this method, it is often of interest to compute the RCS of a geometry over a 

band of frequencies. The paths of the rays and the divergence factor (3.21) are independent of 

frequency. If the RCS is desired for more than one frequency value, the impact points of the 
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rays and the corresponding divergence factors could be written to a file and saved on the 

computer and simply read back for different frequency values. The density of rays used 

should correspond to a sufficiently high number to insure convergence for the highest 
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CHAPTER 5 

RAYS VERSUS MODES: PICTORIAL DISPLAY OF ENERGY FLOW 
IN AN OPEN-ENDED WAVEGUIDE 

5.1 Introduction 

Although the SBR method has shown promise in treating complicated structures, one of 

the important issues to address is, What are the limitations of this approach? This chapter 

addresses the above question by considering the problem of a plane wave impinging on a semi- 

infinite parallel-plate waveguide. Two alternative descriptions for the fields propagating in the 

waveguide are the "exact" modal analysis and GO - ray analysis, used by the SBR method. A 

ccqxs%cr, is xade of the t ' i ~  fidd dcs~~iyuur~s h r  h e  pwaiiei-piare waveguicie. Though the 

simple model of the parallel-plate waveguide was chosen because it best demonstrates the ray - 

mode equivalence, the results extend to other waveguide and cavity structures. 

Based on ray optics, the fields and, therefore, the energy flow inside the guide should 

exhibit a beam behavior shown in Fig. 5.1. This physically intuitive ray picture is shown to be 

valid to a good extent if the separation of the waveguide plates is large compared to the 

wavelength. However, as the waveguide opening becomes smaller, the beam picture begins to 

blur after propagating a certain distance into the guide. These results are consistent with the 

fact that GO fields are high-frequency asymsptotic solutions to Maxwell's equations. Although 

the complementary roles of ray and mode have been studied extensively in the past [37]-[39], 

this is believed to be the first graphical display showing the interplay between the two 

alternative descriptions of the fields. 

5.2 Formulation 

The problem under consideration is sketched in Fig. 5.2. The waveguide separation is 

given by a and the angle of the incident plane wave is 8. For the transverse electric (TE) 

polarized case, the incident electric field is assumed to be (exp (jot) time convention) 
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Fig. 5.1 Ray optical picture showing a beam bouncing back and forth in the 
parallel-plate waveguide. 
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Fig. 5.2 Plane wave incident on a semi-infinite parallel-plate waveguide. The 
electric field vector is y-directed. 
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-jb (sin Ox + cos ez) Z = g e  (5.1) 

where k, = w.\TclE is the free-space wavenumber. The field excited inside of the waveguide 

can be described by TE modes: 

W nnx -jk,z 
Ey = Cn sin - e 

n=l a 

W nxx -jkzz 
n=l 

H x =  2 cn ( $ ) s i n 7  e 

0 nxx -jkzz 
n=l 

H, = 2 cn (,%)cosy- e (5.2) 

2 Here k, = [k, - (nn/a)*I1n and Cn is the modal coefficient of the nth mode. The sign of k, is 

to be taken as either positive real or negative imaginary. 

For waveguide separation koa D 1, Kirchoffs approximation can be used to determine 

the modal excitation coefficients by matching the incident field in (5.1) to the modal field in 

(5.2) at the aperture z = 0. The results are 
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a -jb sin ex  nxx 
sin -dx a 

2 Cn =- j e 
a O  

[e-jko sin 8 
(- l )n+l+l] ,  (nx/a) 

- (ko sin €I)* 

nx i f  ko s i n  8 f - a *  (5.3) 

nx 
i f  ko sin 8 = - a I - j ,  

It is important to point out that the present interest is mainly in observing the field behavior 

deep into the waveguide, not the details of the field distribution near the wave opening. 

Therefore, although the exact Wiener-Hopf solution exists for this problem [40], the 

Kirchhoff s approximation is sufficient for our purpose. 

The above described procedure can also be applied to the transverse magnetic (TM) case. 

For the sake of brevity, the results for the TM case are not included here. The conclusions 

reached for the TE case can also be drawn for the TM case. 

5.3 Numerical Discussion 

Shown in Figs. 5.3(a) and 5.3(b) are plots of the energy flow inside the guide for 

waveguide separation a = 50 h and plane wave incident at 8 = 30". Each arrow contains 

information on both the magnitude and the direction of the Poynting vector Re (s x 8*) at that 

point. The size of the arrow is proportional to the magnitude of the Poynting vector. The 

direction of the arrow is the direction of the energy flow. All vectors with a magnitude of less 

than 3 dB of the incident field are too small to appear. The physically intuitive picture based on 

the ray argument is shown in Fig. 5.3(a) and the actual energy flow computed from the modal 

sum in (5.2) is shown in Fig. 5.3(b). Figure 5.3(c) is an enlargement of a section of Fig. 
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5.3(b) to show the details of the Poynting vectors. The evanescent modes are of little 

importance in the modal sum in the sense that there is no noticeable change in the energy plot if 

they are included or discarded. The resemblance of the actual distribution to the ray picture is 

apparent in this case. The fields in Fig. 5.3(b) are the sums of 99 propagating modes with 

different phase velocities. It is fascinating to observe that the modes add up to give an orderly 

ray picture. 

As the waveguide separation is decreased to 10 and 3 h shown respectively in Figs. 5.4 

and 5.5, the actual field no longer retains the beam behavior after some distance into the guide. 

The blurring occurs at approximately 70 h into the guide in Fig. 5.4(b) and 5 h in Fig. 5.5(b). 

In other words, the simple ray-optical picture is not accurate for describing the field after some 

depth into a small waveguide. Shown in Fig. 5.6 are the energy flow plots for various incident 

angles of a 5 h waveguide. The beam blurring is not a very strong function of the incident 

angle. 

Finally, an interesting phenomenon is observed in Fig. 5.5(b) where the beam behavior 

reemerges after many wavelengths into the guide. At approximately z = 25.5 h, the condition 

(5.4) 
2 [ko - (nn/u )] *L2 = integer multiple of 2n: 

is almost satisfied for all five of the propagating modes. The result is that the pattern from 0 to 

25.5 h will be repeated approximately. Note, however, that the reemerged beam pattern no 

longer corresponds to the ray picture in Fig. 5.5(a). The same phenomenon is displayed in 

Fig. 5.7 for a 5 h waveguide. In this case the condition in (5.4) is satisfied at around z = 60 h 

for the nine propagating modes. If the waveguide separation is large and many propagating 

modes are excited, the distance inside the waveguide before observing this repetitive behavior 

will be extremely long. 
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5.4 Summary 

This chapter demonstrated that the ray-optical description of the field in an open-ended 

waveguide excited by a plane wave is valid if the waveguide separation is large compared to the 

wavelength. As the waveguide separation gets smaller, the actual energy flow inside the guide 

begins to blur after propagating in a beamlike manner some distance into the guide. The simple 

ray-optical picture begins to break down at this point. Therefore, the GO-based SBR should 

be valid for deep cavities when the aperture is large compared to the wavelength. When the 

cavity is not too deep, SBR should also be valid for small apertures. For the small aperture, 

deep cavity case, the simple ray description must be modified to account for the beam blurring. 

This would possibly correct the discrepancy of the null predicted at 8 = 10" by SBR not found 

by modal anaysis for the *polarization in Fig. 3.1 l(a). The solution to this problem will 

enable the extension of the ray-bouncing technique to a wider class of problems. 
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CHAPTER 6 

CONCLUSIONS AND EXTENSIONS 

In this thesis, the problem of the reduction of the radar cross section of open-ended 

cavities was studied. The issues investigated were reduction through lossy coating materials 

on the inner cavity wall and reduction through shaping of the cavity. A new method was 

presented to calculate the RCS of any arbitrarily shaped structure in order to study the shaping 

problem. The limitations of this method were also addressed. 

Chapter 2 studied modal attenuation in a multilayered coated waveguide. It was shown 

Liar by empioying two iayers of coating, it was possible to achieve an increase in both the 

magnitude of attenuation and the frequency band of effectiveness. It was also shown that the 

near axial incidence RCS of a terminated circular waveguide with a 4h diameter aperture can be 

significantly reduced with a double layer of coating. As the angle of incidence increased, the 

effectiveness of the coating diminished. This is due to the fact that higher-order modes that are 

not highly attenuated by the given coating geometry are strongly excited at the wide angles of 

incidence. Further studies should be made in multilayered coatings to determine geometries 

that would result in a strong level of attenuation for higher-order modes in addition to the low- 

order modes. This would result in an increase in the range of effective RCS reduction not only 

in incidence angle, but in frequency as well, since more modes are excited in the guide as the 

frequency increases. 

The numerical method used in finding the roots of the characteristic equation breaks 

down when the coating thickness is very lossy and large in terms of wavelength. For complex 

arguments with large imaginary components, the Bessel and Neumann functions are related by 

J ~ ( z )  = iNU(z) 

J’U(z) = iN’,,(z) 



116 

: 

where i = and thus are no longer independent (shown in Appendix A). This causes the 

corresponding 4 x 4 matrices for that coating layer to become singular, and the matrix inversion 

in (2.9) is no longer possible. A reformulation of this problem using a different set of basis 

functions for the radial dependence of the modal fields might circumvent this problem. 

Chapter 3 presented a new method of computing the RCS of an arbitrary cavity, and 

Chapter 4 applied this method to study the effects of longitudinal bending on RCS reduction. 

Of course, experimental results to verify the SBR calculations would be highly desirable. For 

a complex structure such as the S-bend, SBR requires a large number of rays per wavelength 

for numerically convergent solutions. This results in a large computation time. The 

development of the SBR computer code and the results generated for this thesis would not have 

been possible without the availability of the NSF Cray-XMP supercomputer. A more 

sophisticated scheme in determining the far fields from the aperture field of the cavity might 

reduce the number of rays needed for convergent results and greatly reduce the computer time. 

Additionally, the SBR method could be applied to computing the RCS's of external 

structures in addition to cavity structures. One such use would be to use SBR to compute the 

RCS of, for example, a realistic model of an entire aircraft instead of idealized models of 

different components of the aircraft. This has the added advantage of being able to take into 

account mutual interaction between the various parts of the aircraft. Another possible 

application of SBR would be for the analysis of beam waveguide problems [41]-[44]. 

Finally, Chapter 5 compared the ray and modal descriptions for the fields in a parallel- 

plate waveguide. For large waveguide separations, the fields do indeed exhibit a beam 

behavior after travelling a very large distance into the guide. For small separations, the beam 

picture begins to blur a short distance into the guide. To extend the range of validity of the 

SBR method, the simple ray picture must be modified to account for the beam blurring. One 

improvement would be launching of edge diffracted rays. This has the difficulty that, in 
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general, one ray gi res rise to an infinite amount of diffracted rays. Another possible 

improvement lies in finding a proper way to account for the propagation of a finite-width 

collimated beam. 
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APPENDIX A 

BESSEL FUNCTIONS FOR LARGE ARGUMENTS 
WITH LARGE IMAGINARY PARTS 

For very lossy coating in an ovennoded waveguide, kd is complex with 

lkpl >> 1 

Im(kpr) c 0 

IIm(k@)l>> 1 

From Abramowitz and Stegun [45], (9.1.2) and (9.1.3): 

1 1 For l z l j  =: J u(z) = p c o s  7Q (z - -u-x 2 - -n) 4 

1 1 N ~ ( z )  = p s i n  m (z - -m 2 - -XI. 4 

1 1 
2 4 

Let z’ = z - -un: - --x. 

If 2) is fixed and finite, then 

1 1 
2 4 

lz’l= lz--u-x--nl-+= as l z l + w .  

Express z’ as z’ = x + iy where x and y are purely real. 

From Churchill [46], pg 57: 

1 
eY+e-Y eY-e-Y 

sin z’ = sin x ( - ) + i cosx  (- 
2 2 

eY+e-Y eY-e-Y 
2 2 cosz’=cosx(-) - is inx (- 1. 

If y < 0 and lyl>> 1, then e-Y >>> eY, and we have 

(A.3) 

(A.4) 



1 
2 
1 
2 

sin z’ = - e-Y (sin x - i cos x) 

cos z’ = - e-Y (cos x + i sin x). 

I Clearly, cos z’ = i sin z’. Therefore, 

J d k g )  = iNu(kpr) 

I J’dkg) = iN’d+) 

when (A.l) holds. 

119 



120 

REFERENCES 

M. I. Skolnik, Introduction to Radar Systems. New York: McGraw-Hill Book Co., 
1980. 

A. Sommerfeld, Math. Ann., vol. 47, p. 317, 1896. 

G. Mie, "Beitrage zur Optik triiber Medien speziell kolloidaler Metallosungen," Ann. 

S. G. Marconi, "Radio Telegraphy," P roc. IRE, vol. 10, p. 237, 1922. 

E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section. 
Artech House, Inc., 1985. 

Phy., V O ~ .  25, pp. 337-445, 1908. 

Dedham, Mass: 

P. Bedard, "Stealth Cars," Car and Driver, vol. 26, December 1980, pp. 140-148 

H. A. Brooks and J. W. Crispin, Jr., *'Comments on the RCS characteristics of 
cylinders, hollow pipes, and cylindrical cavities," Conductor Corporation Report No. 
1801-2-T(0043-147), Ann Arbor, Michigan, Aug. 1966. 

H. R. Witt and E. L. Price, "Scattering from hollow conducting cylinders," Proc. ZEE, 
vol. 115, pp. 94-99, Jan. 1968. 

S. Chang and T. B. A. Senior, "Scattering by a spherical shell with a circular 
aperture," Air Force Weapons Lab., Albuquerque, NM, Interaction Note 141, Apr. 
1969. 

J. W. Moll and R. G. Seecamp, "Calculation of radar reflecting properties of jet engine 
intakes using a waveguide model," IEEE Tran. Aerosp. Electron. Sys., vol. AES-6, 
pp. 675-683, Sept. 1970. 

T. W. Johnson and D. L. Moffat, "Electromagnetic scattering by open circular 
waveguide," Radio Science, vol. 17, no. 6, pp. 1547-1556, Nov. 1982. 

C. S. Lee and S. W. Lee, "RCS of a coated circular waveguide terminated by a perfect 
conductor," ZEEE Trans. Antennas Propagat., vol. AP-35, pp. 391-398, April 1987. 

C. S. Lee, S. L. Chuang, S. W. Lee, and Y. T. Lo, "Wave attenuation and mode 
dispersion in a waveguide coated with lossy dielectric material," University of Illinois 
Electromagnetics Laboratory, Urbana, IL, Technical Report, No. 84- 13, July 1984. 

C. S. Lee, S. W. Lee, and S. L. Chuang, "Normal modes in an overmoded circular 
waveguide coated with lossy material," IEEE Trans. Microwave Theory Tech., vol. 

M. Miyagi, A. Hongo, and S. Kawakami, "Transmission characteristics of dielectric- 
coated metallic waveguide for infrared transmission: slab waveguide model," IEEE J .  
Quantum Electron., vol. QE-19, pp. 136-145, Feb. 1983. 

M7"-34, pp. 773-785, July 1986. 



121 

H. G. Unger, "Lined waveguide," Bell System Tech. J., vo!. 41, pp. 745-768, March 
1962. 

J. W. Carlin and P. D'Agostino, "Low-loss modes in dielectric lined waveguide," Bell 
System Tech. J.,  vol. 50, pp. 1631-1638, May-June 1971. 

J. W. Carlin and P. D'Agostino, "Normal modes in overmoded dielectric-lined circular 
waveguide," Bell System Tech. J., vol. 52, pp. 453-486, April 1973. 

E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides 
for long distance optical transmission and lasers," Bell System Tech. J., vol. 43, pp. 
1783-1809, July 1964. 

C. Dragone, "High-frequency behavior of waveguides with finite surface impedances," 
Bell System Tech. J. ,  vol. 60, pp. 89-1 16, January 1981. 

P. H. Pathak and A. Altintas, "An efficient approach for analyzing the EM coupling 
into large open-ended waveguide cavities," I985 North American Radio Science 
;~it%iinlg Digesr, p. 2i6, 'v'ancouver, Canada, lY83. 

R. F. Harrington, Time Harmonic Electromagnetic Fields. New York: McGraw-Hill 
Book Co., 1961. 

P. J. B. Clarricoats, "Propagation along unbounded and bounded dielectric rods," Part 
1 and Part 2, Proc. IEE, Mon. 409E and 410E, pp.170-186. 

C. Yeh and G. Lindgren, "Computing the propagation characteristics of radially 
stratified fibers: an efficient method," Applied Optics, vol. 16, pp. 483-493. 

C. S. Lee, S. W. Lee and R. Chou, "RCS reduction of a cylindrical cavity bv dielectric 
coating," International IEEEIAP-S Symposium Digest, pp, 305-308, Philadelphia, 
June 1986. 

R. W. Ziolkowski and W. A. Johnson, "Plane wave scattering from an open spherical 
shell: a generalized dual series approach," National Radio Science Meeting Digest, p. 
162, Boston, June 1984. 

W. A. Johnson and R. W. Ziolkowski, "The scattering of an H-polarized plane wave 
from an axially slotted infinite cylinder: a dual series approach," Radio Science, vol. 
19, no. 1, pp. 275-291, 1984. 

C. -C. Huang, "Simple formula for the RCS of a finite hollow circular cylinder," 
Electron. Lett., vol. 19, pp. 854-856, Sept. 1983. 

S. W. Lee, P. Cramer, Jr., K. Woo, and Y. Rahmat-Samii, "Diffraction by an 
arbitrary subreflector: GTD solution," IEEE Trans. Antennas Propagat., vol. AP-27, 
pp. 305-316, May 1979. 

S. W. Lee, P. Cramer, Jr., K. Woo, and Y. Rahmat-Samii, Correction to "Diffraction 
by an arbitrary subreflector: GTD solution," IEEE Trans. Antennas Propagat., vol. 
AP-34, p. 272, Feb. 1986. 



122 

S. W. Lee, M. S. Sheshadri, V. Jamnejad and R. Mittra, "Reflection at a curved 
dielectric interface: geometrical optics solution," IEEE Trans. Microwave Theory 
Tech., vol. MTT-30, pp. 12-19, Jan. 1982. 

M. Born and E. Wolf, Principles of Optics, Sec. 8.8.4. New York: MacMillan Co., 
1964. 

R. Mittra and A. Rushdi, "An efficient approach for computing the geometrical optics 
field reflected from a numerically specified surface," IEEE Trans. Antennas Propagat., 

S. W. Lee and R. Mittra, "Fourier transformation of a polygonal shape function and its 
application in electromagnetics," IEEE Trans. Antennas Propagat., vol. AP-3 1, pp. 99- 
103, Jan. 1983. 

V O ~ .  AP-27, pp. 871-877, NOV. 1979. 

H. Peot, "An electronic umbrella: the B 1B defensive avionics system," , vol. 2, pp. 
15-18, May 1984. 

T. Ishihara, L. B. Felsen, and A. Green, "High-frequency fields excited by a line 
source located on a perfectly conducting concave cylindrical surface," IEEE Trans. 
Antennas Propagat., vol. AP-26, pp. 757-767, Jan. 1978. 

L. B. Felsen and H. Shirai, "Hybrid ray-mode analysis of high frequency wave 
coupling into large waveguides and cavities," Opt. Lett., to appear. 

L. B. Felsen and A. H. Kamel, "Hybrid ray-mode formulation of parallel plane 
waveguide Green's functions," IEEE Trans. Antennas Propagat., vol. AP-29, pp. 637- 
649, July 1981. 

L. B. Felsen, "Progressing and oscillatory waves for hybrid synthesis of source 
excited propagation and diffraction," IEEE Trans. Antennas Propagat., vol. AP-32, 

R. Mittra and S. W. Lee, Analytical Techniques in the Theory of Guided Waves. New 
York Macmillan, 197 1 * 

pp. 775-796, Aug. 1984. 

G. Goubau and F. Schwering, "On the guided propagation of electromagnetic wave 
beams," IEEE Trans. Antennas Propagat., vol. AP-9, pp. 248-256, May 1961. 

J. R. Christian and G. Goubau, "Experimental studies on a beam waveguide for 
millimeter waves," IEEE Trans. Antennas Propagat., vol. AP-9, pp. 256-263, May 
1961. 

M. Mizusawa and T. Kitsuregawa, "A beam waveguide feed having a symmetric beam 
for Cassegrain antennas," IEEE Trans. Antennas Propagat., vol. AP-21, pp. 884- 
886, Nov. 73. 

T. - S .  Chu, "An imaging beam waveguide feed," IEEE Trans. Antennas Propagat., 
V O ~ .  AP-31, pp. 614-619, July 1983. 



123 

I [45] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. 
I Washington: National Bureau of Standards, 1972. 

[46] R. V. Churchill, J. W. Brown, and R. F. Verhey, Complex Variables and 
Applications. New York: McGraw Hill Book Company, 1976. 


